Tracking the Evolution of Rail Grinding and Milling

Mike Roney and Dan Hampton

Agenda

- How rail grinding saved our bacon
- From corrective grinding to profile grinding
- Preventive grinding at the Magic Wear Rate
- Rail maintenance strategies and the role of milling
- What has made us successful to date
- Gaps to tackle
- Towards proactive control of RCF
- An holistic approach to rail maintenance

How rail grinding saved our bacon

- Standard carbon rails experienced excessive plastic flow under the "jumbo" 100-ton cars of the 60's.
- Shelly rails and rail corrugations were a common occurrence
- Rail lives could be as short as 3 months – 1 year

Enter rail grinders with fixed position annular stones

From Corrective Grinding to Rail Profile Grinding

addressed high stress wheel/rail contact and vertical rail irregularities

019

Australian ore railways were the first to use ground rail profiles to improve steering through curves by shifting contact bands

Breakthrough was programmable grinding motor positions

Awareness of the "pummelling" benefit of conformal contact with the population of wearing wheels led to development of a suite of engineered rail profile grinding patterns

Preventive maintenance grinding has been a key to controlling RCF, often with a single pass/cycle

Accumulated Tonnage

An associated breakthrough has been grinder productivity at higher speeds, facilitating increasing rail grinder speeds

Electronic Pre-Inspections Guide Effective Grinding Treatment

Railways have linked rail grinding with RFD Effectiveness

Rail milling now in North America

- Rotational cutting process
- Generation of chips collected on machine
- Heat input into cutting tools and chips, no sparks and dust
- Profile defined by shape of cutting tool
- 0.1mm –5mm per pass
- Up to 2km/h per pass
- Polishing process for noise

Regenerative Maintenance - A Role for Milling?

Accumulated Tonnage

What has made rail grinding successful over the past 25 years

- Engineered "as ground" rail profiles
- Cyclic grinding at the Magic Wear Rate
- High production, higher speed rail grinders
- Pre and post grinding automated inspections
- **Grinding to maintain RFD effectiveness**
- **Grinding linked to RFD results**

What Gaps Still Exist?

- Accurate measurement of RCF crack depth
- Understanding route-specific Magic Wear rate
- Balancing high production, high speed rail grinding with the required result
- Recovering from a corrective grinding regime
- implementing how friction modification and grinding can work together to extend rail life

And now A vision for the future

Starring Dan, the Rocket Man

- 1. Increase level of detail to capture RCF at the meter by meter
 - Improve technology for subsurface RCF and crack depth evaluation
- 2. Quantify and integrate rail surface dips into grind plan
- 3. New measures correlated to required action for rail life extension
 - Rail Surface Quality Index (RSQI) and Profile Quality Index (PQI)

- 3. Utilize algorithms to group areas of common demand to treat uniformly based on equipment capabilities.
 - Dynamic Track Segmentation
- 4. Right size equipment to workload for maximum efficiency
 - Combined Rail Grinding Operations
 - Complementary Grind Plans

- 5. Economic Modeling
 - Holistic Systems Engineering Approach
- 6. Predictive Modeling
 - Segment Frequencies
 - Depth of Cut
 - Profile Shape

Measurement Level of Detail

Pre-Grind Inspection - Current State:

Profile Templates

Measured Profile | -

Surface Condition

Automated: KLD ORIAN8 Profiles collection every 10' – 25'

Manual Enhanced: KLD Railscope Observation entered for track grind segment

Measurement Level of Detail

Pre-Grind Inspection - Future State:

Profile Templates

Monitoring Alerts for update

Measured Profile

Automated Real Time Evaluation

Profiles collection every 1'

Predictive Rail Wear

Refined PQI – contact stress

Automated Real Time Evaluation Industry accepted scoring (RSQI) Collected & stored <= 1 meter Collection rate >= 30mph

PREDICTIVE

PREDICTIVE

Rail Surface Quality Index (RSQI)

0	None
1	Barely perceptible, but clearly regular pattern. Unable to feel with a finger.
	Suggested Depth of Cut < 0.5 mm
2	Clear, well-defined, distinct individual cracks – but no pitting. Might detect with finger nail.
	Suggested Depth of Cut < 1.0 mm
3	Strong, regular cracks, consistent spacing. Edge or Crack Width. Easily snags skin or cloth
	Suggested Depth of Cut < 2.0 mm
4	Clear cracking, pitting maximum width 4 mm
	Suggested Depth of Cut 2.0 - 2.5 mm
5	Pitting width between 4 mm - 10 mm. "Heavy", well defined gauge corner cracks.
	Suggested Depth of Cut 2.5 - 3.5 mm
6	Shelling/spalling: regular pitting, > 10 mm diameter
	Suggested Depth of Cut: 3 - 5 mm
7	Shelling/spalling: any defect > 16 mm diameter, > 20 mm length
	Suggested Depth of Cut: > 5 mm

Rail Surface Quality Index (RSQI)

Rail Surface Quality Index (RSQI)

- Industry accepted = multiple sources to accumulate data with fewer MGT between runs
- Scoring is progressive = enables damage/MGT prediction / track segment

Known remedial action / depth of cut required

Areas to Build Knowledge

RCF Surface Damage vs. Subsurface Damage

Improve Eddy Current inferred depth by determining a more accurate crack angle based on location on the rail head

3 mm

RCF Project Proposal

- Class 1s contribute rail samples for the from various tonnages, and curvatures (High and Low rails, and some tangents)
- TTCI and CNRC provide testing for uniformity
- Daniel Szablewski (CNRC) Provide format of data needed and standards for testing, which include surface images, eddy current probe, cut sections, and hardness testing

- Methodical documentation of RCF in rails
- Achieve RCF crack plane cross-sectional morphology by doing 2 cuts:
 - At 90 $^{\circ}$ and 45 $^{\circ}$
- Map steep to shallow angle vs. position on railhead running surface
- Compare Surface RCF vs. Subsurface RCF

- Why the 2 cut planes?
 - RCF appears
 different on cross sections when cut
 at different
 orientations
 - We need to map the accurate depth and angle of the cracks

2 Different Cuts - Same Rail

- Comparing Surface vs. Subsurface RCF requires destructive testing
- 14 rails in the matrix to date, to add rails from other tests with TTCI
- Requires Class 1s participation

							MGT	'					
	0 -	50 -	100 -	150 -	200 -	300 -	400 -	500 -	600 -	700 -	800 -	900 -	>
Curvature	49	99	149	199	299	399	499	599	699	799	899	999	1000
0.0 - 0.9													
1.0 - 1.9											•		
2.0 - 2.9						0			00				
3.0 - 3.9													
4.0 - 4.9								80					
5.0 - 5.9													
6.0 - 6.9													
7.0 - 7.9													
8.0 - 8.9													
9.0 - 9.9													
> 10.0													

Rails Analyzed to Date:

90 degree cut 45 degree cut

Layers to Consider:

- High & Low Rails
- Rail Grade (i.e. standard, intermediate, premium)
- Track Curvature (i.e. variable radius)
- Tonnage Accumulation (i.e. variable MGT in rail life-cycle)
- Running Surface Condition (i.e. dry, lubricated, TOR friction modified)
- Superelevation
- Average Train Speed
- Authorized Speed
- Traffic Type (i.e. axle load, train speed)
- Maintenance Grinding (frequency and amount)

RCF Morphology: Document for each cut plane

Position of initiation point on rail running surface

Rail Surface Dips Integration - Grind Plan

- Goal: Reduce or eliminate rail surface dips that increase vertical loading, causing premature fatigue of the rail
 - Corrugation
 - Engine burns
 - Crushed head/Flattened head (not a joint 3/8"+ depth and 8"+ long:
 FRA Compliance manual)
 - Dipped Welds
- Technology refinement
- Data cleanup for non rail surface dips -> grind plan
- Agree on criteria, depth of cuts, right equipment

Profile Quality Index (PQI)

- Determine correlation between current measure
 Grind Quality Index (GQI) and rail life extension
 - Current project with Sentient Science & Canadian
 National Research Council
- Establish new profile quality measure directly correlated to rail life extension
 - Determine whether corrective grinding for profile needed based on economics

Rail Wear Measurements (x,y to base)

- Measure wear values along the rail head
- Align run over run profile shapes and wear values

• Requires dynamic segmentation to group similar profiles for predicting wear and determine treatment to apply.

Predictive Wear to Higher PQI

- Account for predicted wear when grinding to bring the optimal profile mid cycle
- Results in more optimal wheel rail interaction for a longer duration.

		Standard	Predictive
	MGT	PQI	PQI
Post Grind	0	100	80
	10	90	90
Mid Cycle	20	80	100
	30	70	90
New Grind	40	60	80
	AVG PQI	80	88

New/Revised PQI Measure

- Directly correlated to profile shape impact on rail life
- Real time comparison to RR average wheel profile or route average wheel profile
 - Determination of conformal, non-conformal, and closely conformal
- Compares predicted wear to determine whether can grind to a shape that will wear to optimal or can only grind to target profile shape now.

PQI – Where Deviation occurs matters

- Specific angles currently have different weights based on criticality but allowable variation in one location should change the allowable variance in another.
- Need to account for difference in overall shape and estimated contact stress.

Dynamic Track Segmentation

 Traditional Segments: Length of Curve, tangents broken by mileposts, curves, or a boundary (prefix, subdivision).

 Dynamic Track Segmentation – creates segments based on similar demand after inspection.

= More grinding

Distance wh

where needed, and less where not needed

Dynamic Track Segmentation

- Traditional segments based on physical markers so operator knows where to change to next configuration: patterns, speed, downward pressure
- Executing Dynamic Segmentation requires accurate knowledge of where the pre-inspection equipment and the grinding equipment is located on the rail.
 - GPS, GIS surveys, redundant systems
 - Same technology enables performing a complementary grind using the specialty grinder (24 stone) behind the production grinder (120 stone)

Right Size Equipment to Workload

Combined Rail Grinding Operations Configuration

 Benefits – full coverage, split work load, 65% less track time, single pre-grind inspection using same templates, fewest passes to achieve target, uniform running band across all rail

Work Load Leveling – Complementary Grind Plans

Cycle 2 when Cycle 1 without Specialty Grinder

Cycle 2 when Cycle 1 with Specialty Grinder

RESULTS: More closely match demand = rail life extension

Work Load Leveling – Spiral Transitions

Problem:

- Transition between targeted profiles tangent profile to sharp curve high rail profile
- Demand in spiral often higher/different than full body but treat for average from PTS – PST
- First 200' tangent past spiral point has damage higher than rest of tangent – closer to curve demand

Solution:

- Create transition templates
- Create separate grind segment
- Spirals less than 300' ground by specialty grinder
- Full body profile starts prior to consistent flange contact
- Requires accurate location

RESULTS: More closely match demand = rail life extension

Benefits: Closer to Optimal Rail Life

 Dynamic Track Segmentation – creates segments based on similar demand after inspection.

 Complementary Grind Plans – Allows detailed work on shorter segments to meet demand variation and maximize equipment productivity.

Different locations have
different demands / Magic
Wear Rates (optimal balance
of grind without overgrinding)

Summary: More Precise Operations

Planning Future State

Frequency

Network => Scheduling Segments: Track lengths with common railcar tonnage, broken by route intersections or territory boundaries

CSX: 400+ scheduling segments

PREDICTIVE

Metal Removal per Cycle

Subdivision/Prefix => Dynamic

Demand Driven Segmentation:
each track is divided by areas with
similar demand (profile and surface
variation)

Complementary Grind Plans

MORE CLOSELY MATCH DEMAND

- Level of detail capture RCF & profiles meter by meter
- RSQI industry accepted for predictive grinding
- PQI correlated to rail life extension & use predicted wear
- Group common demand -> right-size equipment to work load -> work load leveling based on equipment capabilities
- Economic modeling for optimization

